Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wei Wang,^a* Bing Zhao,^b Peng-Wu Zheng^c and Xue-Min Duan^c

^aDepartment of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China, ^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^cSchool of Pharmaceuticals and Biotechnology, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China

Correspondence e-mail: wangweitfj@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.005 Å R factor = 0.040 wR factor = 0.129 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

5,5'-[(*p*-Phenylenedimethylene)dithio]bis(1-phenyl-1*H*-1,2,3,4-tetrazole)

The title compound, $C_{22}H_{18}N_8S_2$, was synthesized by the reaction of α, α' -dibromo-*p*-xylene and 1-phenyl-5-thio-1,2,3,4-tetrazole. In the molecule, the two tetrazole rings are almost parallel, making a dihedral angle of 9.8 (3)°. The two terminal phenyl rings attached to the tetrazole rings are perpendicular to the central benzene ring.

Received 15 March 2005 Accepted 21 March 2005 Online 31 March 2005

Comment

Dithioethers are often used as bridging ligands in the construction of coordination polymers with soft metal ions. Flexible and rigid chain-linked dithioethers containing *N*-heterocyclic groups have been synthesized and investigated (Constable *et al.*, 2002; Hong *et al.*, 2000). Some of the tetrazole derivatives possess diverse pharmacological properties (July *et al.*, 1968; 1982). However, the crystal structures of only a few complexes of monosubstituted tetrazole derivatives have been reported to date (Lyakhov *et al.*, 2003). The title compound, (I), has been synthesized by the reaction of α, α' -dibromo-*p*-xylene and 1-phenyl-5-thio-1,2,3,4-tetrazole. We present its crystal structure here.

In (I) (Fig. 1), the two tetrazole rings are almost parallel, with a dihedral angle of 9.8 (3)° between them. Interestingly, the two terminal phenyl rings, C1–C6 (*A*) and C17–C22 (*B*), attached to these tetrazole rings make a dihedral angle of 29.7 (3)°. Rings *A* and *B* are essentially perpendicular to the central benzene ring C9–C14, making dihedral angles of 97.3 (3) and 94.8 (3)°, respectively, with the latter. Atoms C7 and C16 in the tetrazole moieties each have distorted trigonal geometry, with the N–C–N and N–C–S angles (Table 1) deviating significantly from the ideal sp^2 hybridized values. The average lengths of the S–Cs p^3 and S–Cs p^2 bonds [1.800 (3) and 1.720 (8) Å, respectively] are close to the values of 1.811 (2) and 1.726 (2) Å reported in the literature (Wang *et al.*, 2004).

In the crystal structure of (I), there are no short intermolecular contacts.

An isomer of (I) is reported in the preceding paper (Luo *et al.*, 2005).

Figure 1

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

A solution of α,α' -dibromo-*p*-xylene (1.07 g, 5 mmol) in ethanol (10 ml) was added dropwise to a mixture of 1-phenyl-5-thio-1,2,3,4-tetrazole (1.96 g, 11 mmol), KOH (0.615 g, 11 mmol) and ethanol (10 ml). The reaction mixture was then stirred for 24 h at room temperature. The precipitate was filtered off, washed with water and recrystallized from ethanol (yield 70%; m.p. 460–461 K). Spectroscopic analysis: IR (KBr, ν , cm⁻¹): 3062, 2363, 1594, 1500, 1460, 1382, 1274, 1235, 763, 693; ¹H NMR (CDCl₃, δ , p.p.m.): 4.57 (4H, *s*), 7.37 (4H, *s*), 7.48–7.53 (10H, *m*). Analysis calculated for C₂₂H₁₈N₈S₂: C 57.64, H 3.93, N 24.45%; found: C 57.59, H 4.01, N 24.36%. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in acetonitrile.

Crystal data

-		
$C_{22}H_{18}N_8S_2$	$D_x = 1.373 \text{ Mg m}^{-3}$	
$M_r = 458.58$	Mo $K\alpha$ radiation	
Monoclinic, $P2_1/c$	Cell parameters from 955	
a = 10.114 (15) Å	reflections	
b = 10.537 (15) Å	$\theta = 2.9-25.8^{\circ}$	
c = 20.92 (3) Å	$\mu = 0.27 \text{ mm}^{-1}$	
$\beta = 95.56 \ (3)^{\circ}$	T = 293 (2) K	
V = 2219 (6) Å ³	Prism, colourless	
Z = 4	$0.30 \times 0.28 \times 0.24 \text{ mm}$	
Data collection		
Bruker SMART CCD area-detector	3916 independent reflections	
diffractometer	2692 reflections with $I > 2\sigma(I)$	
φ and ω scans	$R_{\rm int} = 0.030$	
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$	
(SADABS: Sheldrick, 1996)	$h = -12 \rightarrow 11$	

 $k = -12 \rightarrow 12$

 $l = -13 \rightarrow 24$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0619P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.5887P]
$vR(F^2) = 0.129$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3916 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
289 parameters	$\Delta \rho_{\min} = -0.21 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

S1-C7	1.719 (3)	S2-C16	1.721 (3)
S1-C8	1.797 (3)	S2-C15	1.803 (3)
N4-C7-N1	109.2 (2)	N8-C16-N5	109.0 (2)
N4-C7-S1	126.3 (2)	N8-C16-S2	128.0 (2)

All H atoms were positioned geometrically and refined as riding (C-H = 0.93-0.97 Å), with U_{iso} (H) = $1.2U_{eq}$ (parent).

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Constable, E. C., Housecroft, C. E., Kariuki, B. M., Kelly, N. & Smith, C. B. (2002). *Inorg. Chem. Commun.* 5, 199–202.
- Hong, M. C., Su, W. P., Cao, R., Fujita, M. & Lu, J. X. (2000). *Chem. Eur. J.* 6, 427–431.
- July, P. F., Hudyma, Y. W. & Brown, M. (1968). J. Med. Chem. 11, 111–117.
- July, P. F., Hudyma, Y. W., Brown, M., Essery, J. M. & Partyka, R. A. (1982). J. Med. Chem. 25, 1145–1150.
- Luo, X.-L., Wang, W., Ma, G.-C. & Zhang, W.-Q. (2005). Acta Cryst. E61, 01161–01162.
- Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M. & Lvashkevich, L. S. (2003). Acta Cryst. E59, m38–m40.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, W., Liu, H. M. & Zhang, W. Q. (2004). Acta Cryst. E60, o1107o1109.

 $T_{\min} = 0.923, \ T_{\max} = 0.938$

11 289 measured reflections